首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18229篇
  免费   4116篇
  国内免费   3746篇
测绘学   822篇
大气科学   2080篇
地球物理   5124篇
地质学   10005篇
海洋学   3548篇
天文学   91篇
综合类   1426篇
自然地理   2995篇
  2024年   46篇
  2023年   237篇
  2022年   541篇
  2021年   765篇
  2020年   770篇
  2019年   822篇
  2018年   738篇
  2017年   833篇
  2016年   801篇
  2015年   908篇
  2014年   1166篇
  2013年   1414篇
  2012年   1138篇
  2011年   1251篇
  2010年   1129篇
  2009年   1158篇
  2008年   1206篇
  2007年   1216篇
  2006年   1272篇
  2005年   1118篇
  2004年   997篇
  2003年   889篇
  2002年   800篇
  2001年   710篇
  2000年   651篇
  1999年   542篇
  1998年   478篇
  1997年   439篇
  1996年   358篇
  1995年   353篇
  1994年   311篇
  1993年   265篇
  1992年   188篇
  1991年   130篇
  1990年   95篇
  1989年   104篇
  1988年   64篇
  1987年   41篇
  1986年   33篇
  1985年   33篇
  1984年   19篇
  1983年   12篇
  1982年   5篇
  1981年   11篇
  1980年   6篇
  1979年   6篇
  1978年   14篇
  1973年   2篇
  1971年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
32.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
33.
Though it is well known that vegetation affects the water balance of soils through canopy interception and evapotranspiration, its hydrological contribution to soil hydrology and stability is yet to be fully quantified. To improve understanding of this hydrological process, soil water dynamics have been monitored at three adjacent hillslopes with different vegetation covers (deciduous tree cover, coniferous tree cover, and grass cover), for nine months from December 2014 to September 2015. The monitored soil moisture values were translated into soil matric suction (SMS) values to facilitate the analysis of hillslope stability. Our observations showed significant seasonal variations in SMS for each vegetation cover condition. However, a significant difference between different vegetation covers was only evident during the winter season where the mean SMS under coniferous tree cover (83.6 kPa) was significantly greater than that under grass cover (41 kPa). The hydrological reinforcing contribution due to matric suction was highest for the hillslope with coniferous tree cover, while the hillslope with deciduous tree cover was second and the hillslope with grass cover was third. The greatest contributions for all cover types were during the summer season. During the winter season, the wettest period of the monitoring study, the additional hydrological reinforcing contributions provided by the deciduous tree cover (1.5 to 6.5 kPa) or the grass cover (0.9 to 5.4 kPa) were insufficient to avoid potential slope failure conditions. However, the additional hydrological reinforcing contribution from the coniferous tree cover (5.8 to 10.4 kPa) was sufficient to provide potentially stable hillslope conditions during the winter season. Our study clearly suggests that during the winter season the hydrological effects from both deciduous tree and grass covers are insufficient to promote slope stability, while the hydrological reinforcing effects from the coniferous tree cover are sufficient even during the winter season. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
34.
利用2007~2010年间14景ALOS PALSAR数据及SBAS InSAR技术,获取阿尔金断裂带中段91°E附近现今地壳形变速率场,并反演该地区断层的滑动速率和闭锁深度。结果表明,阿尔金断裂中段地区的形变速率自北向南呈3个线性梯度变化区,分别为阿尔金山东段8~12 mm/a、索尔库里盆地6~7 mm/a、阿尔金断裂带以南约0 mm/a。3个速率梯度变化区主要集中在喀腊达坂断裂和阿尔金主断裂上;拟合的断层就位于金雁山南缘、喀腊达坂断裂南邻,走滑速率从西(7.1 mm/a)向东(14.0 mm/a)逐渐增大,闭锁深度自西(4.5 km)向东(10.6 km)逐渐趋深。结合前人研究推测,金雁山(阿尔金山链东部)与索尔库里拉分盆地组成的复合破裂构造模式,是转换断层运动时应力和应变调整的主要驱动机制。  相似文献   
35.
The study is based on the underground fluid observation data in Lijiang area, northwest Yunnan Province. The data include the water level and temperature in Dangxiao well and Jinjia well, and the ion measurements in Ganze spring. Combining with the data of regional hydrogeology, rainfall, well structures, and the geothermal gradient, we analyzed the variations of each measurement item before the Ludian MS6.5 earthquake on August 3, 2014 and discussed the possible mechanism for the abnormal variations. The water levels of both Dangxiao well and Jinjia well are influenced by local rainfall, but the former shows hysteresis according to rainy seasons and is the long trend influence; while the latter shows synchronization between high water level and rainy season, indicating good connection between well water and shallow aquifer. The recharge water for Dangxiao well is in relatively low temperature, and the temperature sensor is located at the major connecting section between the well water and the aquifer; the water temperature variation is mainly affected by the discharge status and variation of water level. The Jinjia well is always in static level, and the temperature sensor is below the major connecting section between the well water and aquifer, so the water temperature is affected little by water level variations and in smooth fluctuation. The recharge source for Ganze spring can generally increase the contents of calcium and magnesium ions, so does the conductivity. The water level data of Dangxiao well since 2012 are decomposed with wavelet technique. The results, excluding such high-frequency components as the noise and the semidiurnal and daily wave components influenced by earth tide, are further processed with difference method in order to eliminate the trend effect. The results show that the relative change of water level is enhanced and in relatively rapid increase before the Ludian MS6.5 earthquake; the corresponding water temperature values are high. The tendency of water level in Jinjia well displays descending, while the corresponding water temperature shows ascending. The content of calcium ion, magnesium ion, bicarbonate ion, and conductivity of Ganze spring are descending, while the content of fluoride ion is ascending. The abnormal variations of underground fluid in Lijiang area appeared in turns and were accompanied with minor earthquakes before Ludian MS6.5 earthquake, which indicates enhancing of regional stress and increasing of fluid activity.  相似文献   
36.
The effects of soil water content (SWC) on the formation of run‐off in grass swales draining into a storm sewer system were studied in two 30‐m test swales with trapezoidal cross sections. Swale 1 was built in a loamy fine‐sand soil, on a slope of 1.5%, and Swale 2 was built in a sandy loam soil, on a slope of 0.7%. In experimental runs, the swales were irrigated with 2 flow rates reproducing run‐off from block rainfalls with intensities approximately corresponding to 2‐month and 3‐year events. Run‐off experiments were conducted for initial SWC (SWCini) ranging from 0.18 to 0.43 m3/m3. For low SWCini, the run‐off volume was greatly reduced by up to 82%, but at high SWCini, the volume reduction was as low as 15%. The relative swale flow volume reductions decreased with increasing SWCini and, for the conditions studied, indicated a transition of the dominating swale functions from run‐off dissipation to conveyance. Run‐off flow peaks were reduced proportionally to the flow volume reductions, in the range from 4% to 55%. The swale outflow hydrograph lag times varied from 5 to 15 min, with the high values corresponding to low SWCini. Analysis of swale inflow/outflow hydrographs for high SWCini allowed estimations of the saturated hydraulic conductivities as 3.27 and 4.84 cm/hr in Swales 1 and 2, respectively. Such estimates differed from averages (N = 9) of double‐ring infiltrometer measurements (9.41 and 1.78 cm/hr). Irregularities in swale bottom slopes created bottom surface depression storage of 0.35 and 0.61 m3 for Swales 1 and 2, respectively, and functioned similarly as check berms contributing to run‐off attenuation. The experimental findings offer implications for drainage swale planning and design: (a) SWCini strongly affect swale functioning in run‐off dissipation and conveyance during the early phase of run‐off, which is particularly important for design storms and their antecedent moisture conditions, and (b) concerning the longevity of swale operation, Swale 1 remains fully functional even after almost 60 years of operation, as judged from its attractive appearance, good infiltration rates (3.27 cm/hr), and high flow capacity.  相似文献   
37.
This study measures the presence of bacteria‐sediment associations (BSAs) in an alpine, glacier‐fed watershed in the Southern Coast Mountains of British Columbia, Canada. The impact of BSAs on the creation of flocculated particles and their settling velocity are quantified using a laser transmissometer. Results from the study indicate that BSAs are present in the watershed and vary over both space and time. The percentage of bacteria associated with sediment particles was found to range from < 1% to 40%. Major sources of planktonic bacteria such as agricultural land and wastewater treatment outflow co‐occur with large decreases in the BSA ratio. Laboratory analysis demonstrates that an increase in the concentration of bacteria was associated with a decrease in the volume concentration of small particles, and a decrease in both estimated density and measured settling velocity for particles in larger size classes; consistent with flocculated particles of increasing complexity arising from combinations of primary particles and/or BSAs. Paleoenvironmental reconstructions using laminated lake sediments in alpine, glacier‐fed systems benefit from a fuller understanding of the geomorphologic processes by which they formed. While bacteria are noted to enhance formation of flocculated particles in laboratory systems, their impact upon geomorphic processes in natural systems have yet to be fully explored. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
38.
To assess recharge through floodwater spreading, three wells, approx. 30 m deep, were dug in a 35-year-old basin in southern Iran. Hydraulic parameters of the layers were measured. One well was equipped with pre-calibrated time domain reflectometry (TDR) sensors. The soil moisture was measured continuously before and after events. Rainfall, ponding depth and the duration of the flooding events were also measured. Recharge was assessed by the soil water balance method, and by calibrated (inverse solution) HYDRUS-1D. The results show that the 15 wetting front was interrupted at a layer with fine soil accumulation over a coarse layer at the depth of approx. 4 m. This seemed to occur due to fingering flow. Estimation of recharge by the soil water balance and modelling approaches showed a downward water flux of 55 and 57% of impounded floodwater, respectively.  相似文献   
39.
An experimental campaign was set up to quantify the contribution of evapotranspiration fluxes on hillslope hydrology and stability for different forest vegetation cover types. Three adjacent hillslopes, respectively, covered by hardwood, softwood, and grass were instrumented with nine access tubes each to monitor soil water dynamics at the three depths of 30, 60, and 100 cm, using a PR2/6 profile probe (Delta‐T Devices Ltd) for about 6 months including wet periods. Soil was drier under softwood and wetter under grass at all the three depths during most of the monitoring period. Matric suction derived via the soil moisture measurements was more responsive to changes in the atmospheric conditions and also recovered faster at the 30 cm depth. Results showed no significant differences between mean matric suction under hardwood (101.6 kPa) with that under either softwood or grass cover. However, a significant difference was found between mean matric suction under softwood (137.5 kPa) and grass (84.3 kPa). Results revealed that, during the wettest period, the hydrological effects from all three vegetation covers were substantial at the 30 cm depth, whereas the contribution from grass cover at 60 cm (2.0 kPa) and 100 cm (1.1 kPa) depths and from hardwood trees at 100 cm depth (1.2 kPa) was negligible. It is surmised that potential instability would have occurred at these larger depths along hillslopes where shallow hillslope failures are most likely to occur in the region. The hydrological effects from softwood trees, 8.1 and 3.9 kPa, were significant as the corresponding factor of safety values showed stable conditions at both depths of 60 and 100 cm, respectively. Therefore, the considerable hydrological reinforcing effects from softwood trees to the 100 cm depth suggest that a hillslope stability analysis would show that hillslopes with softwood trees will be stable even during the wet season.  相似文献   
40.
Many researchers have studied the influence of rainfall patterns on soil water movement processes using rainfall simulation experiments. However, less attention has been paid to the influence under natural condition. In this paper, rainfall, soil water content (SWC), and soil temperature at 10‐, 20‐, 30‐, 40‐, and 50‐cm depths were simultaneously monitored at 1‐min intervals to measure the variation in SWC (SWCv) in response to rainfall under different rainfall patterns. First, we classified rainfall events into four patterns. During the study period, the main pattern was the advanced rainfall pattern (38% of all rainfall events), whereas the delayed, central, and uniform rainfall patterns had similar frequencies of about 20%. During natural rainfall, rainwater rapidly passed through the top soil layers (10–40 cm) and was accumulated in the bottom layer (50 cm). When a high rainfall pulse occurred, the water storage balance was disturbed, resulting in the drainage of initial soil water from the top layers into the deeper layers. Therefore, the critical function of the top layers and the bottom layers was infiltration and storage, respectively. The source of water stored in the bottom layer was not only rainfall but also the initial soil water in the upper soil layers. Changes in soil temperature at each soil depth were comonitored with SWCv to determine the movement characteristics of soil water under different rainfall patterns. Under the delayed rainfall pattern, preferential flows preferred to occur. Under the other rainfall patterns, matrix flow was the main form of soil water movement. Rainfall amount was a better indicator than rainfall intensity for SWCv in the bottom layer under the delayed rainfall pattern. These results provide insights into the responses of SWCv under different rainfall patterns in northern China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号